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PREFACE 

The David W. Taylor Lectures were initiated as a living memorial to 

our founder, in recognition of his many contributions to the science of 

naval architecture and naval hydromechanics.  His systematic investiga- 

tion of resistance of ship hulls is universally known and used, but of 

equal importance was his use of hydrodynamic theory to solve practical 

problems.  Many of the experimental techniques which he pioneered are 

still in use today (for example, the use of a spherical pitot tube for 

exploring the structure of a wake field).  The system of mathematical 

lines developed by Taylor was used to develop many designs for the Navy 

long before the computer was invented.  And perhaps most important of 

all, he established a tradition of applied scientific research at the 

"Model Basin" which has been carefully nurtured through the decades, and 

which we treasure and protect today. 

These lectures were conceived to support and strengthen this 

tradition.  We will invite eminent scientists in fields closely related 

to the Center's work to spend a few weeks with us, to consult with and 

advise our working staff, and to give lectures on subjects of current 

interest. 

It is most fitting that Professor Reinier Timman, mathematician and 

philosopher, initiate this series.  He has long been a friend and on 

several occasions has used the Center for a retreat, to his benefit and 

ours.  He has inspired and advised our staff and cooperated in our work. 

His students at Delft have made leading contributions to the development 

of modern naval hydrodynamics.  Professor Timman1s belief that mathe- 

matics can contribute powerfully to our technology is much in the David 

Taylor tradition.  We are honored that he agreed to give the first in 

this David W. Taylor Lecture Series. 

W. E. CUMMINS 
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FOREWORD 

It is great honor to me to be invited to give the first 

in the series of David W. Taylor Lectures.  My associations 

with the Model Basin date from a long time ago, and a visit 

to the United States is for me not a real visit unless I 

have the opportunity to taste once more the stimulating 

atmosphere which not only gives the Model Basin an out 

standing place in hydrodynamical research but also acts as 

a breeding ground where nearly all outstanding people in the 

field passed an essential period in their lives.  So I am 

extremely grateful to have been given the opportunity once 

more to spend some time at this most interesting place and 

to participate in its work.  I wish to express my gratitude 

to Justin McCarthy who originated the idea of the lectures 

and to all other friends who made this period a success. 

In particular, I am pleased that Dr. Langan, whom I used to 

know as a promising undergraduate student, did a fine job 

in editing the lectures. 

R. TIMMAN 
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ABSTRACT 

The lectures present an introduction to modern control 

theory.  Calculus of variations is used to study the problem 

of determining the optimal control for a deterministic sys- 

tem without constraints and for one with constraints.  The 

method of dynamic programming is also used to solve the 

unconstrained control problem.  Stochastic systems are intro- 

duced, and the Kalman-Bucy filter is derived. 

INTRODUCTION 

Optimal control theory is involved with the great human effort to 

control or influence processes of one type or another.  The objectives 

and criteria for the performance of a physical system may be diffused or 

defy tractable analysis in many situations, but the basic concepts on 

which to proceed have been established in control theory.  One first 

considers a system and a process through which the state of the system 

is changing in time; in other words, some action or motion of the system 

takes place in time.  This behavior of the system is described by a set 

of time-dependent variables x (t) = (x., . . . , x ) which are called 
—        1 n 

the state variables.  In addition to the state of the system, one also 

considers controls by which the process in question can be influenced. 

These controls are represented by a set of variables u  (t) = 

(u.i (t), . . . , u  (t)) which are called the control variables. 
1 m 

At a certain instant in time, say tp, the state of the system is 

known to be xn.  If an analysis of the system is to be performed, a sys- 

tem of equations must be specified which predict the state for t > tn 

and for a given control function u_.  These equations are called the 

dynamic equations for the system; they may take the form of an ordinary 

differential equation 

x (t) = f (t, x, u) 



or a difference equation 

xn+l = f <V V V 

They might even take the form of an integro-differential-difference 

equation or a time delay equation, but they cannot take on a form such 

that, the solution at some time t.. is dependent on the solution in the 

future, t > t1.  The dynamic equations must reflect this principle of 

nonanticipation.  One does not violate this principle by choosing a 

control in anticipation of the future and thus influencing the future 

state of the system based on estimated future information; in fact, the 

choice of such a control is actually based on the history of the state 

of the system available at the time of the choice. 

If no further specification of system performance is given, every 

control function which yielded a physical realizable state of the system 

for t > t~ would be a solution to the control problem.  One can have a 

meaningful control problem only if there is a desired objective, a goal 

to be achieved by the process.  Moreover, it is not sufficient merely to 

have a goal; there must be a control by which this goal can be achieved. 

This control could be the case of no control, f(t, x, u) = f(t, x); 

however, it must exist.  Since it is not the purpose of these notes to 

delve into all the mathematical problems, it will be assumed that there 

exists at least one control by which the objective can be achieved.  It 

will further be assumed that any control function used in the sequel 

yields a unique state function x (t) with x (tn) = x«; the state func- 

tion is obtained by solving the dynamic equations. 

In general, there are a number of controls which could yield the 

desired system state.  From among this set of possible controls, one 

would like to choose the "best" control with respect to some performance 

criterion.  For example, one would like to choose the control so that 

the process is carried out with a minimum cost in fuel, or time, or 

money.  In the sequel, it is assumed that the performance criterion can 

be expressed in terms of a cost function; furthermore, it is assumed 

that the cost function is additive with respect to the contribution from 

each time interval.  An example of such a cost function is 



G(xT, T) +     F(a, x, u) da 

where _x_ =  x(T).  This cost function is dependent on the final state of 

the system through the function G and on the intermediate states and the 

control function through the function F.  The additive property of the 

control function with respect to the intermediate times is represented 

by the integral.  By an optimal control is meant that control which 

minimizes the cost function; it is this function which is the desired 

result of optimal control theory. 

Any process that is being controlled is subject to unpredicted 

disturbances, and these can make a significant difference in the choice 

of a control function.  Suppose the dynamic equations of a system is 

given by the differential equation 

g -« + •><'> 

where p(t) represents a disturbance.  The behavior of the system in 

response to the two different controls (u. = - x) and (u? = - e  ) does 

not differ if there is no disturbance (p = 0); however, if a disturbance 

is present, the response is significantly different.  If xn = 1, the 

response to the first control is given by 

•'/: 
x. = e  + e        e p(a) da 

whereas the response to the second control is 

x = e l  +     p(a) da 
Z J0 

Such differences could conceivably result in a different choice for an 

optimal control. 



In analyzing systems and their control, one must find a way to 

represent the unpredictable disturbances.  Such disturbances cannot be 

modeled by analytic functions since the value of an analytic function at 

any point is predictable from its value on an arbitrary short interval. 

One answer to modeling these disturbances is to describe them as stochastic 

processes.   The theory of such processes was developed to model the 

fluctuation observed in physical systems.  Wiener processes or the 

Brownian motion process are of particular interest to the stochastic 

control problem; many of the disturbances that affect a control system 

can be modeled by processes generated from Wiener processes.  A Wiener 

process is a stochastic process in which the statistical properties over 

the interval (t, t+i) are the same as those over the interval (s, s+x); 

moreover, the behavior of the process is independent over time intervals 

which do not overlap, and there is no trend in the behavior. 

Once the stochastic disturbances have been introduced into the 

control theory, the problem is no longer deterministic.  The state 

variables and control variables are no longer predictable but must be 
2 

described by their statistical properties.  Kaiman and Bucy  provide a 

solution to the stochastic control problem for nonstationary linear 

systems.  Their solution consists of using an optimal filter to estimate 

from the observed system performance the state of the system in terms of 

the conditional mean; the estimated state is fed back to the control 

signal through linear feedback.  The linear feedback is determined by 

solving a deterministic control problem; the filter depends on the 

disturbances and on the system dynamics, but it is independent of the 

cost.  Although the nonlinear stochastic control problem or its equiva- 

lent, the nonlinear filter problem, has not been solved, some headway 
3 

has been made by Bucy and Joseph;  this lecture considers only the 

linear problem. 

Astrom, K. J., "Introduction to Stochastic Control Theory," Academic 
Press, Inc., New York (1970). 

2 
Kaiman, R. E. and R. S. Bucy, "New Results in Linear Filtering and 

Prediction Theory," Journal of Basic Engineering Series D, American 
Society of Mechanical Engineers, Vol. 83, pp. 95—108 (1961). 

3 
Bucy, R. S. and P. D. Joseph, "Filtering for Stochastic Processes with 

Applications to Guidance," Interscience Publishers, Inc., New York (1968). 
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As an example of a control problem, consider a ship moving through 

a current of water; the ship is a system undergoing a change in state. 

In this example, the state is the position (x, y) of the ship.  The 

parameters which control the motion of the ship are the power, which 

determines the velocity relative to the water, and the steerage angle, 

which controls the heading angle 8.  In this simplification of the 

system, the dynamic equations are: 

x = V cos 9 + u(x, y) 

y = V sin 9 + v(x, y) 

where u and v are the velocity of the current in the x- and y-directions, 

respectively.  The goal might be to go from point A to point B.  If it 

is desired to reach B in the shortest possible time, the cost function 

would be the accumulated time; if it is desired to reach B with the 

minimum expenditure in fuel, the cost function would give the expended 

fuel in terms of x, y, V, and 8.  A more complicated cost function would 

result if it is desired to reach B in the least time with a reasonable 

expenditure of fuel.  Both the power and steerage angle could be subject 

to unpredictable perturbations; there could also be a stochastic pertur- 

bation of the current. 

This lecture on control theory first treats a deterministic optimal 

control problem with no constraints on the controls.  It is first solved 

by transforming the problem into a boundary-value problem for an ordin- 

ary differential equation, the so called indirect approach; it is then 

solved by the direct method developed by Bellman, the method of dynamic 
4 

programming.   The big contribution of modern control theory to the de- 

terministic control problem has been the extensions to controls with 

constraints, and a discussion of constrained controls constitutes an- 

other major topic of the lecture.  Still another important area is the 

development of the theory of stochastic processes necessary in the 

Bellman, R. E. and S. E. Dreyfus, "Applied Dynamic Programming," 
Princeton University Press, Princeton, N.J. (1962). 



treatment of stochastic controls.  Finally, the theory of Kalman-Bucy 

filters is given and their solution to the stochastic control problem is 

presented for linear systems. 

THE OPTIMAL CONTROL PROBLEM 

In these lectures the simplest optimal control problem considered 

is that of a state variable x(t) and a control variable u(t) defined on 

an interval 0<t<T.  The process being controlled is described by the 

dynamic equations 

x(t) = f(t, x, u) (1.1) 

with 

x(0) = x0 (1.2) 

The vector f_  is twice continuously differentiable with respect to x  and 

Lipschitz continuous with respect to u.; this latter condition means 

simply that there is a constant L such that for every pair of control 

vectors u_ and v 

|f(t, x, u) " l(t, x, v)| < L|u - v| (1.3) 

For each control vector u, these conditions imply that the state 

vector x» which is obtained from solving (1.1) and which also satisfies 

the initial condition (1.2), exists and is unique.  Moreover, from among 

the set of control vectors, it is assumed that there is a unique control 

u which minimizes the cost function C .  The cost function is defined by 

the following: 

CT[u] = G(xT, T) +      F(o, x, u) dö       (l.A) 



The functions F is twice continuously differentiable with respect to x 

and Lipschitz continuous with respect to u; G represents the cost at the 

terminal point x(T) = xT; it is twice continuously differentiable with 

respect to X . 

Suppose that v is an optimal control vector, and consider a slight 

deviation 6u of this control vector.  If 

u(t) - v + 6ii 

ii(t) is also a control vector, as can be seen from an application of the 

theory of ordinary differential equations.  If z_  is the state vector 

associated with the control v, the new control u^ yields a new state 

vector x. given by 

x(t) = z +  6x 

where 6x  is an unknown.  Moreover, since \/ minimizes the cost function, 

the new cost function is greater; 

F(o, x, u) da + G(x ,T) 
J0 

>-L F(a, z, v) da -f G(z_,T)       (1.5) 
0 1 

Since the old state vector satisfies 

Z = f (t, z,   v) 

and the new one satisfies 

x = f_(t, x, u) 



then 

k+6x=k=f_(t,   z_ + 6x, v + 6u) 

Now by assumption f is twice continuously differentiable with respect to 

x; hence 

6x = f_ (t, z  + 6x, v + 6u) - f_(t, z,  v) 

= f  6 x + f_(t, z, v + 6u) - f_(t, £, v) + 0(|6x|2) (1.6) 

It is not necessary that 6u be uniformly small; indeed, in problems 

involving bang-bang controls, this is not at all true.  However, there 

can be deviations 6u of order one only if their duration is short.  It 

can be proved that if 6u satisfies the condition 

|6u(a)| 
•'n 

T 
do < e (1.7) 

then the deviations 6x^(t) are also of order e.  Since by assumption, _f 

is Lipschitz continuous with respect to u, 

|f(t, z, u) - f(t, 8,V)|< L|u - v| = 0(6u) 

Moreover, it follows from Equation (1.6) that to the same order of 

approximation 

6x = f  6x + f(t, z, u) - f(t, Zj   v) (1.8) 

or in abbreviated form 

6x = f  6x + f(u) - f(v) (1.9) 



This equation is a linear differential equation for 6x, and there 

are standard ways for solving linear differential equations.   One first 

considers the linear homogeneous equation 

±  = Av_ (1.10) 

where in our case y represents the vector 6x and A the matrix f .  Let 
■*- — —x 

V_J(t) = (^.(t, T), $2j(t, T), . . . , $nj(t, T» 

be the solution of Equation (1.10) with $..(T, x) - 6.., the Kronecker 

delta; moreover, let $(t, T) be the matrix whose column vectors are the 

vectors £ , $(t, t) = $.«(t» T).  The matrix $(t, T) is called the 

transport matrix or fundamental matrix for the differential Equation 

(1.10).  From (1.10) it follows that as a function of t 

|| (t, T) = A*(t, T) (1.11) 

and by its definition 

*(T, T) = I (1.12) 

where I is the unit matrix.  The solution vjt) is given in terms of its 

value at t = T by 

v_(t) = 4>(t, T) v_(T) (1.13) 

Coddington, E. A. and N. Levinson, "Theory of Ordinary Differential 
Equations," McGraw-Hill Book Company, Inc., New York (1955). 



Hence 

I £(t) = Z(t) ■ $(t, T) y(T) 

= 4>(t, T) $(T, t) y(t) 

or if £ ^ 0» 

I = $(t, T) $(T, t) (1.14) 

Differentiating with respect to t yields 

0 = || (t, T) 4>(T, t) + *(t, T) -^ <J>(T, t) 

= A $(t, T) 4>(l, t) + *(t, T) |j- *(T, t) 

= A(t) + *(t, T) |j. *(T, t) 

It can be shown that $(t, x) has an inverse and that this inverse is 

$(l, t); consequently 

|j. *(T, t) • - * X(t, T) A(t) = - *(T, t) A(t) 

that is, $(t, T) as a function of T satisfies 

|j- $(t, T) = - *(t, T) A(T) (1.15) 

Although (1.15) will be used subsequently, of immediate interest is the 

solution to the inhomogeneous linear equation 

Z - A x + &(t) (1.16) 

10 



with 2.(T) = 0; the solution is given by 

v_(t) =  J  4>(t, a) g(a) da (1.17) 
T 

which can be verified by substitution into (1.16).  For the control 

problem, (1.17) has two consequences:  it can be used in conjunction 

with (1.6) to obtain an estimate for the order of magnitude of 6x  and 

it can be used to solve (1.9). 

In the first case, 

|6x| <     |$(t, a)|| f(u) - f(v)| da +    0(6x2) da 
0 0 

< M     | f(u) - f(v)|do +     0(6x2) 
0 

where M is a bound for $.  From (1.3) 

|Sx| < LM     |6u| da +      0(6x2) da 

fC    2 <  LMe + J  o(6x ) da 

By iteration 

|6x| < LMe +    0(e2) da = 0(e) 
0 

The second case is of more interest, of course, for it gives an 

approximation of 6x good to the second order in e, namely, 

J  $(t, a) [f(u) - f(v)] 6x =  J  0(t, a) U(u) ■• f(v)] do       (1.18) 
0 

11 



where $ is defined by 

|£ (t, T) = f (t) *(t, T) (1.19) 
at —X 

Now consider the difference in the values of the cost function; by 

(1.5) 

F(a, x, u) - F(a, z, v) da + G(xT, T) - G(zT, T) > 0 
0 

Hence, from the assumptions on F and G, 

[F 6x + F(u) - F(v)] da + G 6x(T) > 0 
•',     X X \)    x 

By (1.18), 

[Fx(i)  J <KT, a) (f(u(a)) - f(v(a)))da + F(u(x)) - F(v(x))] di 
'0   x    0 

t + G     $(T, a) (f_(u(a)) - f_(v(a))) da _> 0     (1.20) 
x J0 

If the order of integration in the double integral is changed, 

F (T)    $(x, a) [f(u(a)) - f(v(a)) dadx 
0  x    0 

F (T)CD(T, a) dx tf(u(a)) - f(v(a))] da   (1.21) 
0   a  x 

T 
The vector function p_ is defined by 

rT 
£
T(t) = -     F (T) $(T, t) dT - G (T) $(T, t)      (1.22) 

~ X ä 

Recall that one of the properties of $ was (1.15) 

|^ (T, t) = - $(T, t) f^(t) 

12 



Then 

£T =   Fx(t)   *(t,   t)   -      J      Fx(T)  |j- $(T,   t)   dT  -  Gx(T) |j *(T,   t) 

=  F   (t)   +      J F   (T)   4>(Tt   O   f   (t)   dT  + Gv(T)*(T,   t)   f   (t) 
X "£. A A X X 

=  Fx(t)   -     "[ J       FX(T)   *(T,   t)   dT  - Gx(T)   $(T,   t)J   fx(t) 

£T=FX-£T1X (1-23) 

T T 
with £ (T) = G (T).  In terms of p , (1.20) becomes 

r 
o 

[- P
T(a) (f(u) - f(v)) + F(u) - F(v)] da > 0 

or 

[- F(v) + £T f(v)] - [- F(u) + pT f(u)] da > 0  (1.24) 
0 

Since 6u is an arbitrary deviation satisfying only (1.7), it can be 

chosen such that u » v everywhere except on some arbitrary interval; as 

a consequence, the inequality in (1.24) must hold for the integrand: 

Define 

- F(v) + pT f_(v) > - F(u) + pT £(u) 

H(t, u) = - F(u) + £
T f(u) (1.25) 

Then H satisfies 

H(t, v) > H(t, u) (1.26) 

13 



for v, an optimal control.  This is the Pontryagin maximal principle 
T 

which states that for given values of £ and x  at time t, the optimal 

control v(t) is the control function for which the Hamiltonian H(t, u) 

is a maximum. 

If the control functions are sufficiently smooth, the optimal 

control is that control for which 

0=|Ü=-F +P
Tf (1.27) 

du       U        U 

It is assumed that f is differentiable with respect to u; prior to this 

equation, f need only be Lipschitz continuous with respect to u.  This 

equation is a system of m equations which could be solved for the 

m control functions (u.,...,u ) in terms of the state variables 
1     m     T     T 

(x..,...,x ) and the new variables (p ,...,p ).  Consequently, the 

optimal control problem has been reduced to a two-point, boundary-value 

problem for an ordinary differential equation: 

x = f (t, x» u) 

T        T 
p  = F - p  f 1     x  v       x 

or 

0 = 
T 

=  - F     + p     f u                u 

x = —» 
aP

A 

3H 
p = "ax- 

du 

(1.28) 

14 



where 

x(0) = x0 

p(T) = Gx(T) (1.29) 

T 
There are just enough conditions to determine xt  £ , and u. 

T 
The function H contains the variables x» £ , u, and of course t. 

Using (1.26) to eliminate u, (1.28) can be expressed in terms of the set 
T 

of dual variables x and £f = £ , where the prime denotes transpose of 

the vector; the resulting system is the familiar canonical form of 

classical mechanics. 

9H 
x = s— 
-  3p 

£ (1.30) 

The boundary conditions are stated in terms of x~, x.T» and T; for 

instance, both xT and T might be fixed, or either one might vary while 

the other is fixed.  No boundary conditions are specified directly in 

terms of £; the boundary conditions on £ are obtained indirectly by 

substitution into (1.29).  Equation (1.29) does, however, contain a 

sufficient set of conditions to pose a two-point, boundary-value problem 

for (1.30). 

Another form that the boundary condition at t = T might assume is 

for x^,  and T to satisfy an end condition of the form 

M(xT, T) = 0 (1.31) 

where M is a twice continuously differentiable vector function of both 

its arguments.  In this case the method of Lagrange multipliers will be 

used to transform the optimal control problem into a corresponding 
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two-point, boundary-value problem. The vector q^ is introduced here as a 

Lagrange variable. Now the problem of minimizing the cost function (14) 

is replaced by the problem of finding the unconstrained minimum of 

C 
q ~     0 

+MfM(xT, T) + G(xT, T)  (1.32) 

The boundary condition (1.31) has been inserted into the cost function 

by means of the Lagrange multiplier JJ.  Suppose v(t) is the control 

which minimizes C .  For a variation 6u to the control v, let x(t) 

denote the new state variable, and let t = T+AT be the time at the new 

terminal point.  The main difference from the previous argument in this 

section is that the terminal time is T+AT rather than AT.  The new cost 

is given by 

T+AT 

C (u) =      F(a, z  + 6x, v + 6u) + £»(z + 6x - f(a, z  + 6x, v + 6u) da 
q     0 

+ G(x(T + AT), T + AT) + u'M(x(T + AT), T + AT) 

Hence the increase in cost C (u) - C (v) is given as: 

f C (u) - C (v) =      [F 6x + F 6u + q'6x - qff 6x - q'f 6u] da 
q—     q—     <L x—   u—  -*-—  -^x—  -*-u — 

+ GxAxT + GTAT + M ' (M^ + M^T) 

,T+AT 

* J F(a,  x,  u) + £fx - 5_fI(cr,  x, u) da 
T 

where x =  z + 6x 

f 
0 

fT        d(S* fT 

J    5L1 dT dt = ^-'(T) 6^(T) "   J    Af °2i d° 
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Hence 

o.l {tpv - A' " ^'f J 6x- + tFn " 4?f J 6H> da 

+ £' (T)6x(T) + GxAxT + GTAT + M' (M^AX^ + M^T) 

-T+AT 

+  J   F(a, x, u) + £'x - £?f(a, x, u) - F(T, 2LT u ) 

- s/x(T) + a'f(T, xT» %) da 

+ [F(T, xT, HT) + £'zT + CL'öXCT) - £
ff (T, xT uT)] AT   (1.33) 

The integral from T to T+AT is a second order contribution which goes to 

zero faster than the other terms as AT ■* 0. 

In order to determine Ax , consider the solutions of the differ- 

ential Equation (1.1), which have the initial value x~.  These solutions 

satisfy the integral equation 

rt 
x(t) - Xn +  J  I(a» £■ H> da 

Then 

Ax„ 

-AT 

= (x(T) - z(T)) +  J   f(a, x» H> da 

- 6x(T) + f AT + 0(e) 

where the geometry of the proof is illustrated in Figure 1. 

T     T+AT 

Figure 1 — Geometry of the Proof 
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To within second order 

6x(T) = AxT - f AT (1.34) 

Within this order of approximation, (1.33) reduces to the following: 

fT 
0 <     [F - 4f - q'f ] 6x+ [F - q'f ] 6u do 

+ t£f(T) + G + u'M ] A xT 
X       X      X 

+ [-£'(T) f + GT + u'MT + F(T, ^   u^)] AT 

If o^ is now determined so that the coefficient of 6x vanishes, 

q' = F - q'f 
—    x  — x 

This is the same differential Equation (1.23) that £ satisfied; our 

Lagrange multiplier can then be identified with £ 

£ = £ (1.35) 

Moreover, since the relationship must hold independent of <5u, 

F - p'f  =0 (1.36) 
u  *■ —u 

Since there are no longer restrictions on Ax and AT, 

p1(T) + u'M + G = 0 
^ — —x   x 

F + GT + y'MT - £
ff = 0 

Introducing the Hamiltonian (1.25) yields 

(1.37) 
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3H 
X   = 

3p 

£ " 
3H 
3x 

0 = 
3H 
3u 

(1.28) 

The initial condition x(0) = x~ together with the terminal conditions 

M(xT, T) = 0 

E'CT) = - (M'M + G ) (1.38) 
x   x 

H(T, u(T)) = GT +M
fMT 

provides a sufficient number of conditions to determine x9  £, u, and T. 

The last two equations in the system (1.38) are obtained from (1.37). 

The problems of optimal control theory generally reduce to a two- 

point, boundary-value problem for the system of ordinary differential 

equations (1.30).  Bailey, Shampine, and Waltman  discuss methods for 

solving such two-point, boundary-value problems.  These problems are 

presently solved either by the shooting method or by solving a sequence 

of simpler boundary value problems whose solutions converge to a solu- 

tion of the given problem.  In any case, very few of these problems can 

be solved without the use of electronic computers either digital or 

hybrid. 

The shooting method is the easier, when it works.  It consists of 

supplementing the conditions at one end with a sufficient number of 

assumed conditions to yield an initial value problem.  The initial value 

Bailey, P. B., et al., "Nonlinear Two-Point, Boundary-Value Problems,1' 
Academic Press, Inc., New York (1968). 
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problem is solved; the solution is substituted into the boundary con- 

ditions at the other end.  If these conditions are satisfied, the solu- 

tion to the initial value problem is the desired solution to the two- 

point, boundary-value problem; otherwise, a new set of assumptions is 

made based on the discrepancy between the actual boundary values and the 

calculated values.  Hopefully, as one continues this iteration process, 

the solutions to the initial value problem converge to a solution of the 

two-point, boundary-value problem.  The shooting method may not con- 

verge, or it can be unstable, that is, a small variation in the initial 

conditions results in a large variation in the solution.  If the initial 

problem is unstable, a small error, such as roundoff on a computer, 

could cause subsequently computed values at another point to be meaningless. 

Before proceeding to the direct method for solving the optimal 

control problem, take a second look at the Hamiltonian H and the func- 
T 

tions £ .  Suppose that the terminal cost G is identically zero; the 

cost function is then 

'(u) =  J F(o, x, u) dö 
0 

Further, assume that every point in an open neighborhood N of an optimal 

trajectory z^(t) can be joined to the initial point (0, x~) by a trajec- 

tory x(t) resulting from an optimal control.  This assumption makes the 

minimal cost J a function of the terminal point (T, x  )   in N. 

f J(x , T) = Min  J  F(a, x, u) da        (1.39) 
0 

It is assumed that J is twice continuously differentiable.  Then, 

J(xT + AxT, T+AT) = J(xT, T) + JxAxT + JTAT    (1.40) 
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By the definition of J, there is a control _u + 6u together with a 

trajectory x^ + 6x such that 

c JCx^ + Ax_f T+AT) =     F(o, x + 6x, u + Su) da -T   -T •> 
° (1.41) 

where u is the control such that 

J(*T» 
T> =  J  F<ö> *♦ H> <*O (1.42) 

From (1.41) and (1.42) 

J(xT + AxT, T+AT) - J(xT, T) 

J  F(a, x + 6x, u + 6u) - F(a, x, u) do 

♦ / 

ü 

,T+AT 

F(a, x + 6x, u + 6u) da 

(F 6x + F 6u) dt + 
J    x —   u — 
Ü 

Now from (1.23), the equation for £ is 

F = p' + pff 
x x-        *■ —x 

Hence 

fT 
J [(£* + £'f ) 6x + F 6u] da + 

,T 

= £* (T) 6x(T) +     £'(f 6x - 6x) + F 6u da + FAT 
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From (1.9) 

f 6x - 6x = - f 6u 
—x —   —    —u — 

Hence 

J(xT + AxT, T+AT) - J(xT, T) = p'(T) (Ax_T - fAT) 

T 

* J (F  - p'f ) 6u d0 + FAT 

where use has been made of (1.34).  But by (1.27), F  £'f  = 0; so, 

J(xT + AxT, T+AT) - J(xT, T) = £'AxT + (F - p/ (T)f) AT 

= p'(T) AxT - HAT 

= Jx AxT + JTAT 

where the last equality results from (1.40).  This gives 

J
x = P

f (1.43) 

and 

JT = - H (1.44) 

In the space of variables (x_, T), the vector £' is the gradient of 

the function J; it is normal to the surfaces of constant J; H is the 

Hamiltonian of the function J.  This sheds new light on the maximal 

principle.  Along an optimal trajectory, the change in cost J over a 

given time step AT is a minimum, that is, H is a maximum. 
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OPTIMAL 
TRAJECTORY 

J+AJ 

Figure 2 — Constant Cost Fronts 

These arguments hold only if the terminal cost is zero; G - 0. 

RELATION TO DYNAMIC PROGRAMMING 

The partial differential equations (1.43) and (1.44) can be ob- 

tained by the method of dynamic programming.  This method is based on 

the Bellman principle of optimality.   According to the Bellman prin- 

ciple, an optimal control policy has the property that, regardless of 

the initial state or initial decision, the remaining decisions must 

constitute an optimal control policy with regard to the state which 

results from the first decision. 

In terms of the cost function 

C(u) J F(a, x, u) da 

the Bellman principle takes the form. 

The cost C(u) is a minimum along a curve x defined on [0, T] if it 

is a minimum along each later part of the curve, that is, if 

Dreyfus, S. E., "Dynamic Programming and the Calculus of Variation," 
Academic Press, Inc., New York (1965). 
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J  F(a, x, u) da 

is a minimum along the curve x on the interval [t, T] for all te[0, T], 

The integral is dependent on the end point (t, x(t)).  If one 

defines 

rT 
J(x, t) = min  J  F(a, x, u) da (2.1) 

for all admisible controls u, then 

fT 
J(x, t) = min {F(t, x, u) 6t} + min  J   F da 

u u   t+6t 

or 

J(x, t) = min {F(t, x, u) 6t + J(x + 6x, t + 6t)}  (2.2) 
u 

This equation forms the basis of the direct methods for solving control 
7       8 

problems, described by Dreyfus.   Larson extended the direct methods to 

constrained problems. 

If it is assumed that J has partial derivatives, the differential 

equations (1.43) and (1.44) can be obtained from (2.2).  Hence, the 

boundary value problem for the optimal control is obtained.  If the 

partial derivatives of J exist, the right-hand side of (2.2) can be 

expanded in a Taylor series: 

J(x, t) = min {F6t + J(x, t) + J (x, t) 6x + J (x, t) 6t} 
u 

  (2.3) 
o 
Larson, R. E., "State Increment Dynamic Programming," American 

Elsevier Publishing Company, Inc., New York (1968). 
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From the differential equation (1.1) 

6x = f_6t 

Hence 

0 = min {F + J f 4- J } 6t 
x—   t 

u 

Since 6t > 0, 

0 = min {F + J f + J } (2.4) 
x—   t 

u 

In order to find the minimum of the term in brackets, it is differ- 

entiated with respect to u_ and the result is set equal to zero.  This is 

a necessary, but not sufficient condition; however, if one assumes a 

minimum, it serves the purpose. 

F + J fu = 0 (2.5) 
u   x— 

By (2.4), 

F+Jf+J  =0 (2.6) 

Hence 

H  = 0 
u 

J ■ - H ■ - (F + J f) 
t x 

(1.43) 

From (1.25) 

Jx = p
T (1.42) 
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There is a difference between the definition of H here and its 

definition in the previous section.  This is only an apparent difference 

in the sign of F, which occurs because the lower limit of the integral 

is used in the definition of J here rather than the upper limit as used 

earlier.  Otherwise there is complete agreement with the results of the 

indirect method. 

CONSTRAINTS ON THE CONTROL AND STATE VARIABLES 

In most applications, the control or the state variables cannot be 

chosen arbitrarily but are subject to constraints.  In the problem of a 

ship moving in a current, ship speed is limited by the maximum power 

available.  The constraints can generally be expressed in terms of 

inequalities of the form 

£(x, u) < 0 (3.1) 

where the vector inequality simply means that the components satisfy the 

inequality.  The number of components in the vector £ is the number of 

constraints on the system.  The analysis does not depend on whether both 

x and ii occur implicitly in the inequality; one can have constraints on 

the controls and not on the state of the system or vice versa without 

affecting the analysis. 

In this presentation, the variables in the optimal control problem 

with constraints are the state variable x(t) and the control variable 

jj(t) defined on an interval 0 _< t _< T.  The process being controlled is 

described by the dynamic equation (1.1): 

x(t) - f(t, x, u) 

with initial condition x  = x ; the state and control variables are 

constrained by the inequality (3.1).  For simplicity, the terminal cost 

is taken as zero, G = 0, and the cost function is given by the equation: 

(u) =  J  F(0, x, u) CT(u) =     F(0, x, u) dö (3.2) 
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The vector _f and the cost function F are twice continuously differentiable 

with respect to x and continuously dif ferentiable with respect to u_. 

The Lagrange multipliers will be used here to reduce this problem 

to a two-point, boundary-value problem.  As in (1.32), the differ- 

ential equation is introduced into the cost function by means of a 

Lagrange multiplier £. 

,<H> ■  J C (u) ■    F(a, x, u) + p'(x - f(a, x, u)) da 

which yields the variational equation 

.T 

[F 6 + F 6u + p' fix - p'f 6x - p'f  6u] da 
•>    x—x   u—  *■  —  -^ —x —  ^ —u — 

= £»(T)6x(T) +  J [<F - £' -  £'f ) 6x 
0 

+ (F - p'f ) 6u da > 0 (3.3) 
u  *■ —u  —   — 

The differential in the cost is greater than or equal to zero since 

it is assumed that the variation Su is around an optimal control, a 

control which minimizes the cost. 

Because of the constraint (3.1), the vector <5u is not free. 

For instance, suppose that for t between t1 and t«, the trajectory z^(t) 

due to the optimal control v(t) is along the boundary of the allow- 

able region; see Figure 3.  One cannot freely choose the variation 6u 

in the control vector for t. £ t <_  t? and still expect to remain in the 

allowable region R. 

For the optimal trajectory z^ and control v, there are at most a 

finite number of intervals t, _< t <_  t, + 1 such that equality holds for 

any of the equations in (3.1).* On such an interval, the conditions 

(3.1) can be split into two sets 

*The proof of the statement is topological and beyond the scope of 
these notes. 
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z(t) 
x(t) = z + <5x 

and 

Figure 3 — Constrained Variables 

^(z, v) = 0 

^(z, v) < 0 (3.4) 

where £ = (£ , £2>. 

Consider a new vector ^ defined by 

£(x, u) + ^(x, u) = 0 

The vector \p  is called a defect vector.  Along the optimal trajectory, 

the vector ^ can also be split into two component vectors, ^. and ^«, 

which correspond to the component vectors of £.  The component vectors 

of ^ also change from interval to interval.  Along a given interval 
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(3.5) 

i2 > ° 

Since ^ (z^ v_) is zero on this interval, either z_, v, or both are 

on the boundary of their allowable range.  From previous arguments, it 

is known that one cannot freely choose 6u_.  Only those values of 6u are 

allowed which satisfy 

ii(z. + 62L' v + <5u) <_ 0 

or by (3.4) 

£ (z  + 6x, v + 6u) - $_Az,  v) < 0 

On the other hand, for a neighboring trajectory to z_ 

£ (z + 6x, v + 6u + ± + 6£ - 0 

on [tk, tk+1].  Since £ = - ^ 

<Kz. + 6x, v + 6u) - 0U, v) + 6^ = 0        (3.6) 

In order that the above inequality and (3.6) hold, 

6^ > 0 (3.7) 

Moreover, provided the variations are sufficiently small, öJJJ« is free. 

If Q  is twice continuously differentiable, then it follows from 

(3.6) that 

^ 6x + ^ 6u + öij; = 0 (3.8) 
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Set 6u = (6u , 6u?) and consider the first N  equations in (3.8), 

Nj, " dim (^). 

If the square matrix <J>.   is not singular, its inverse y exists, and 

6ux  = - Y ilu 6u2 - Y 4lx öx ■ Y öix 

The vectors 6u? and 6x are free; the vector 6^ satisfies (3.7).  If 

the matrix <i),   is singular, the first N,  constraints were de- 
lui *i 

pendent; eliminate the dependent constraints and start again. 

The contribution to the cost differential (3.3) from the 

interval t, <_  t <_ t,+1 is the following integral: 

Ik =  J     ([Fx - V   - Z%  > F^TT 4lx - £'f^Y 4lx] 6x 
k 

+ [(F  - £ff  - F  - £'f  ) Y ±      ]   6u 
u     ~~un    u,     u1     lu^    Z 2 

- (F  - p' f )  y 6\b.} do 
ul    ^1     X 

Define the vector X- by 

XJ - -   ff    - E'f^) Y (3.10) 

Then 
rfckrfl 

tk 

♦ [(F^-E^+Aii^] S * A^} da 
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The vector £ can be determined so that the coefficient of 6x vanishes: 

f - F - £' f, ♦ XJ4; ■lx 
(3.11) 

Since 6u9 is free, the usual argument that 6u  is zero everywhere except 

on a small interval yields 

F  - £' f  + A» 41M  ■ 0 u2  ^ -u2  -1 
xlu2 

(3.12) 

Now 6u can be chosen so that 6u = 0 for t < t. and for t, n < t. 
— — — k k+1 — 

In this case, the only contribution to the cost difference (3.3) is that 

due to I. ; hence 
k 

rck+i 

do 

By (3.7), 6±    > 0; so 

Xx  > 0 (3.13) 

Let the Hamiltonian be defined by 

H--F+£f f-X' 4 (3.14) 

where X  is defined by 

A. > 0  if 4>. = 0 

A. = 0  if 4). < 0 
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The differential system (1.28) also holds for this H, that is, 

3H 

5--Ü (1.28) 9x 

-a 
One example of a constrained control problem is that of a forced 

harmonic oscillator in which the magnitude of the force is limited.  In 

this problem, the force is the control and the process is one of chang- 

ing the velocity and displacement of the harmonic oscillator.  It be- 

comes an optimal control problem if one is interested in finding the 

force or control which reduces the oscillator from a given velocity and 

displacement to zero velocity and displacement in minimum time. 

The equation of motion for the forced harmonic oscillator with a 

limited force is simply 

d2* + m —« + cz = F 
dt 

where |F| <^ M, a given constant.  Set x = cz/M, T = cot, and u ■ F/M 

where to = /c/M.  In terms of these nondimensional variables, the non- 

dimensional form of the equation of motion is 

x + x = u (3.15) 

where the control function satisfies the inequality |u| £ 1.  This 

constraint can also be written in the form 
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^(u) = (u - 1) < 0 

<f>2(u) = - ( u + 1) < 0 

(3.16) 

The optimal control problem can be formulated in the phase plane. 

If (x, y) are the phase plane coordinates, the equation of motion (3.15) 

takes the form 

x = y 

(3.17) 

y = - x + u 

Starting the oscillator at a given displacement with a given velocity is 

equivalent to assigning a given point (x, y) = (a, b) in the phase plane 

as an initial condition for (3.17).  The rest state of the oscillator is 

represented in the phase plane by the point (0, 0), the point of zero 

displacement and velocity.  Hence, the optimal time control problem is 

one of finding a control u which minimizes the time between states 

(a, b) and (0, 0).  In this problem, the cost is given by 

. r C_(u) = T =  J  dT (3.18) 
1 0 

The cost function F(T, X, U) = 1. 

Set £ = (p, q).  Then the Hamiltonian defined by (3.14) is 

H = - 1 + py + q(u - x) - X(u - 1) (u + 1)    (3.19) 

and, moreover, (1.28) takes the form 
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8H 
x = äF= y 

3H 
y = ^— =-x + u 

3H 
dx 

3H 
^ = " 37=- P 

0 = |jj = q - A(u - 1) - X(u + 1)        (3.20) 

Suppose u is an optimal control which reduces the oscillator from 

the state (a, b) to the state (0, 0) in the minimal time T, and suppose 

|u| < 1 for the interval T  < T < T .  Suppose q ^ 0 on T < T < L. 

By (3.20), q - 2Au - 0; hence, A ^ 0 on (T  T ).  A consequence of 

A +  0 is that <J> = 0; hence, if q f  0, it follows that |u(t)| = 1 on (T , T ) 

In other words, one needs to look only for the optimal control among 

those controls for which |u(t)| = 1. 

Now |u| =1 implies u = -I- 1; hence, the solution of (3.20) is 

given as: 

x + 1 = A sin (T + a) 

y = A cos (T + a) 

p = B sin (T + oO 

q = B cos ( T + aQ) 

q = 2 A u (3.21) 
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Since A ^ 0, it follows from the last of these equations that the sign 

of q is the same as the sign of u.  Hence, if q changes from positive to 

negative, the optimal control must switch from +1 to -1.  It switches 

from -1 to +1 if q changes from negative to positive. 

In a neighborhood of the origin, the optimal trajectory satisfies 

(x + l)2 + y2 = 1 

Hence, its final segment is either on the circle of radius 1 about 

(-1, 0), or it is on the circle of radius 1 about (1, 0); see Figure 4. 

Suppose for the sake of argument that there is an £ > 0 such that 

U(T) = - 1 for T - £ _< x < T.  The last segment of the optimal trajector 
2   2 

is on the semicircle {(x + 1)  + y = 1, 0 <_  y}.. 

Between (0, 0) and (-2, 0), the parameter T would change along this 

semicircle by the amount TT; hence, the sign of q must change somewhere 

on this semicircle.  At the point S. where q changes sign, the sign of u 

must also change, and u switches from -1 to 1.  The optimal path continues 

backward on the circle of radius r. around (1, 0) until either (a, b) is 

reached or q changes sign.  But q does not change sign until the point 

S? is reached since the time between S  and S« is TT.  At S?, the control 

would switch to -1 and the optimal trajectory would continue back on the 

circle of radius r~ around (-1, 0).  This process is continued until the 

point (a, b) is reached.  In the process, one switches control each time 

one of the following semicircles is intercepted: 

[x - (2n - I)]2 + y2 = 1, y > 0,  n=0,l,2,...    (3.22) 

or 

[x + (2n - l)]2 + y2 = 1, y < 0  n=0,l,2,...    (3.23) 

The curve formed by these semicircles is called the switching curve; see 

Figure 5. 
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(a, b) 

Figure 4 — Optimal Trajectory 

Figure 5 — Switching Curve 
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The optimal control and the resulting trajectory in the phase plane 

can now be obtained by reversing the above procedure.  If (a, b) is 

above the switching curve, proceed with the control u = - 1.  The 

optimal trajectory will be along the circle 

2    2 2    2 
(x + ir + y = (a + 1)  + bz 

in the direction of that part of the switching curve which lies to the 

right of x = 0.  For (a, b) on the switching curve, use u = - 1 if 

x < 0 or u = 1 if x > 0.  If (a, b) lies below the switching curve, 

start with u = 1 and change to u = - 1 at the switching curve. 

Change the sign of u at each intersection with the switching curve. 

When u = 1, the optimal trajectory lies on a circle with center at 

(1, 0); when u = - 1, it is on a circle around (-1, 0). 

Suppose only one switch in u is needed to reach the origin from 

(a, b).  Because of the symmetry of the problem geometry in the phase 

plane, it is necessary to consider only those cases for which a = 1 

after the switch.  The origin is then approached along the trajectory 

x = 1 - cos (T - T) 

y = - sin (T - T) (3.24) 

2   2 
which is on the semicircle {(x, y)|(x - 1)  + y  = 1, y <_ 0} let 

T  be the time at which the switch occurs.  The optimal trajectory 
s 
for T _< T  is given by 

5 

x = - 1 + A sin (T + a) 

y = A cos (T + a) (3.25) 
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where A and a are constants defined by 

A sin a = a + 1 

A cos a = b 

By (3.24) and (3.25), the switching time must satisfy 

1 - cos (T - T ) = 1 + A sin (x + a) 
s s 

- sin (T - T ) = A cos (l  + a) 
s s 

Elimination of T  from these equations yields a relationship between the 

terminal time T and the initial point (a, b), namely, 

(a + 1 + cos T)2 + (b + sin T)2 = 4       (3.26) 

By definition, time fronts are the curves which connect initial 

points having the same terminal time T.  Equation (3.26) can be used to 

determine the time fronts for T <_ TT.  If T = 0, the time front is simply 

the origin; if there are no switches in the control, the initial point 

is an endpoint of the curve connecting all initial points from which the 

origin is reached with one switch in time T.  More than one switch would 

require T > IT.  From (3.26), the time fronts for 0 < T _< TT are segments 

of the circle of radius 2 around the point (-1 - cos T, - sin T); see 

Figure 6.  It is the segment of the circle which lies above the switch- 

ing path.  At the switching path, the time front is tangent to the 

vertical line x = constant for x > 0; at the opposite end, it is tangent 

to the switching curve.  For T = TT, the time front is a circle of radius 

2 around the origin. 
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Figure 6 — Time  Fronts 
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STOCHASTIC SYSTEMS 

Stochastic control theory was first applied in this country at the 

Massachusetts Institute of Technology during World War II to synthesize 

fire control systems.  In the 1960fs it was applied to space navigation, 

guidance, and orbit determination in such well-known missions as Ranger, 

Mariner, and Apollo.  Applications of the filtering theory, aspects of 

control theory include submarine navigation, fire control, aircraft 

navigation, practical schemes for detection theory, and numerical in- 

tegration.  There have also been industrial applications; one example 

involved the problem of basic weight control in the manufacture of 
1 

paper. 

The filtering and prediction theory developed by Wiener and Kolmogorov 

forms the cornerstone of stochastic control theory.  It provides an 

estimate of the signal or the state of a process on the basis of observa- 

tion of the signal additively corrupted by noise.  Unfortunately, the 

Wiener-Kolmogorov theory cannot be applied extensively because it requires 

the solution of the Wiener-Hopf integral equation.  It is difficult to 

obtain closed form solutions to this equation, and it is not an easy 

equation to solve numerically. 
2 

Kaiman and Bucy  give a solution to the filtering problem under 

weaker assumptions than those of the original Wiener problem.  Their 

solution makes it possible to solve prediction and filtering problems 

recursively and is ideally suited for digital computers.  Basically, it 

can be viewed as an algorithm which, given the observation process, 

sequentially computes in real time the conditional distribution of the 

signal process.  The estimated state of the process is given as the 

output of a linear dynamical system driven by the observations.  One 

determines the coefficients for the dynamical system by solving an 

initial value problem for a differential equation.  This differential 

equation is easier to solve than the Wiener-Hopf equation. 

Our attention here will be limited to linear systems with quadratic 

cost functions.  In this case the solution of the optimal control 
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problem is given by the separation theorem.   The solution consists of 

an optimal filter for estimating the state of the system from the ob- 

served data and a linear feedback of the estimated state of the system; 

see Figure 7. 

PROCESS 

OBSERVED 
DATA 

^CONTROL SIGNAL 
OPTIMAL 
FILTER 

LINEAR 
FEEDBACK ESTIMATED STATE 

Figure 7 — Stochastic Control System 

The optimal filter is the Kalman-Bucy filter, which will be dis- 

cussed in detail in the next section; the linear feedback is the same as 

would be obtained if the state of the system could be measured exactly 

and if there were no randum disturbances in the system.  Thus, the 

linear feedback can be determined by solving a deterministic problem. 

Because of time limitations, we will not prove but merely accept the 

separation theorem. 

One objection to the use of stochastic control theory is that the 

process to which the theory is applied may not be random but merely 

irregular.  For instance, the traffic flow on the Washington Beltway may 

not be truely random but it is certainly highly irregular.  If I need to 

reach Dullis Airport from DTNSRDC by 1 pm, it might take me 45 to 50 

minutes; but to reach the airport at 6 pm, I would have to allow 2 

hours.  The reason for this variation in lead time is that there will be 

bumper-to-bumper traffic on the Beltway during the rush hour and any 

accident brings this traffic to a halt.  It is not the microscopic but 

the macroscopic properties of the traffic flow that govern our lead time 

estimate.  The traffic flow could be analyzed as a stochastic process; 

such a model would be acceptable provided it predicted the macroscopic 
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properties of the flow.  This is analogus to using linear models in the 

deterministic case.  If the predictions agree with the experimental 

results, the linear theory is said to be good; if they do not, then the 

process is said to be nonlinear.  In using a statistical model, one 

should recognize that it is only a model and not the actual process, and 

one should continually strive to determine the accuracy of his models. 

There are many reasons in favor of applying stochastic theory.  The 

solution of the stochastic problem may be possible whereas the determin- 

istic theory may be hopelessly impossible.  In many problems such as 

that of traffic flow, one may not be interested in the microscopic 

properties but merely in certain macroscopic properties.  In the control 

problem, the stochastic model distinguishes between open and closed 

looped systems but the deterministic model does not.  Another reason for 

using a stochastic model may be that this model is closer to the physics 

of the actual situation. 

In any case the purpose of this section is to lay the ground work 

for stochastic control theory.  Our attention will be focused on certain 

concepts of stochastic processes and random differential equations. 

To describe a stochastic process rigorously would require measure 

theory and a great deal more time.  Our approach will therefore not be 

rigorous, but hopefully it will be complete enough to get across the 

is. 

10 

9 
basic ideas.  For the rigorous approach, see either Doob  or Gikhman and 

Skorokhod. 

A real random variable £ is a set of numbers or events together 

with a probability measure defined on this set.  It is characterized by 

its distribution function F(x) which is defined by 

F(x) = P U < x} 

o 
Doob, J. L., "Stochastic Processes," Wiley, Inc., New York (1963). 

Gikhman, I. I. and A. V. Skorokhod, "Introduction to the Theory of 
Random Processes," W. B. Saunders Company, Philadelphia, Pa. (1969). 
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where P {£ <_  x} is the probability that £ is less than or equal to x. 

The distribution function is nonnegative, nondecreasing, and continuous 

from the left; also F(- «) = 0 and F(°°) = 1. 

Analogously, if £ is an n-truple of random variables, its distri- 

bution function is a function of n real variables. 

F(X;L, X2,..., xn) = P {£x £ x1,..., £n <_ XR} 

and F is called a joint distribution function of the variables £,.  The 

function F(x.., x2,..., x ) is uniquely defined in n-dimensional Euclidian 

space E , is non-decreasing, an< 

to each variable.  Furthermore, 

space E , is non-decreasing, and is continuous from the left with respect 

F(xL, x2,...xi, - °°, xi+2
,",Xn^ = ° 

and 

F(x1,..., Xi, «>,..., «) = F(l) (x1,..., x.) 

where F   denotes the distribution function of the i-truple (£,..., £ ). 

A random function or a stochastic process is a random variable £(t) 

which is a function of time.  As time varies, £(t) describes the evolu- 

tion of the process.  If a random process is recorded as it evolves, the 

recorded function £(•) describes only one of the many possible ways in 

which the process might have developed.  The recorded function £(•) is 

called a sample function of the random process.  For each fixed value of 

t, the quantity £(t) is a random variable. 

Whereas a random variable is characterized by a distribution function, 

a stochastic process is characterized by a set of joint distribution 

functions.  Assume that it is possible to assign a probability distribution 

to the multidimensional random variable E,    = (£(t..), £(t9),..., £(t )) 

for any n and arbitrary times t..  The distribution function 
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F(xr x2,. . . , xn; tr . . . , tn) = P {C(tx) < xr . . . , £<tn) < xn) 

is called the finite-dimensional distribution of the stochastic process 

£(t).  For F to be a distribution, it must satisfy the following com- 

patibility conditions: 

F(xr x2,..., xt, «>,..., °°; t^..., tn) = F(Xl, x2,..., Xi; t1,..., tn) 

for i < n and 

F(x ,..., x ; t ,..., t ) = F(x  ,..., x  ; t  ,..., t  ) 
1      n  1      n      J1      jn  j1      jn 

where j.,..., j  is an arbitrary permutation of the indicies 1, 2,..., n. 

The mean value of a stochastic process is defined by 

00 

CO] = / 
—oo 

m(t) = E[£(t)] =  J  x d F(x, t) 
—00 

where E is the mathematical expected value.  The mean value is thus a 

function of time.  Higher moments of £ are defined similarly. 

The covariance of the stochastic process is given by 

r(s, t) = cov tC(t), 5(B)] = E [(SCO - m(t)) (?(«) - m(s))] 

= JJ  (x - m(t)) (y - m(s)) d F(x, y; t, s) 
—oo 

Our definition of a stochastic process is very general, and 

most systems which come under this definition would be mathematically 

unmanageable.  Some specialization of the theory which makes it possible 

to characterize the distribution of £(t,), C(t«),..., £(t ) in a simple 

way are particularly attractive.  For instance, if the distribution of 
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C(t1),...,C(tn) is identical to the distribution of £(t + T), 

£(t2 + t),...,£(t + T) for all T and all arbitrary choices of the 

times t.,...,t , then the stochastic process £(t) is said to be stationary, 
2 

If only the first and second moments E[£] and E[£ ] of the distributions 

are equal, then the process is weakly stationary. 

Our discussion of control systems has been limited to systems in 

which knowledge of the system at time t together with the governing 

equations suffices to describe its future evolution.  Knowledge of the 

past when the present is given is superfluous relative to the future 

evolution of the system.  The stochastic system analogy of this situation 

is the Markov property for random processes; these are stochastic process- 

es in which the past and future of the processes are conditionally 

independent.  In order to define a Markov process, the conditional 

probability and the transition probabilities have to be defined.  The 

conditional probability P(A|B) is the probability that A will occur if B 

has occurred.  Given a sequence of times t1 < t?  <...< t  < t, the 

probability that £(t) _< x if the sample function £(•) has already taken 

the values E,^^,   5(t2>,... >Z(*n)   is denoted by P(£(t) < x | SUp , . . . , 

£(t )).  A stochastic process is said to be a Markov process if 

p(C(t) < xlsCt^),..., 5(tn)) = p<£(t) 1 *|S(tn» 

The transition probability distribution F(x, t|y, s) is defined by F(x, 

t|y, s) = P(£(t) <_ x|£(s) = y).  If a stochastic process is a Markov 

process, its finite distribution functions are given by 

F(Xj, X2»..., x^; t^,..., t^) - 

F(xx;   tt)  F(x2,   t2|xr   tl)...F(xn,   tn\xn_v   tn_y) 
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This results from an application of the Baye rule.  A Markov process is 

thus defined by two functions, the absolute probability distribution 

F(x, t) and the transition probabilities F(x, t|y, s). 

Consider a system with the following dynamic equation: 

x = f(t, x, u) + £ w (t) (4.1) 

where ^ is a small parameter and w is a stochastic process.  Since w is 

stochastic, the state of the system x will also be stochastic; thus, we 

are interested in solving stochastic differential equations.  Further- 

more, our interest is not with a particular sample function x(#) which 

is a particular discription of the state of the system during one run 

through the process; our interest is with the statistical properties of 

the stochastic process x (t). 

Consider the linear stochastic differential equation 

dx = A x dt + dw (4.2) 

where w is a stochastic process.  In order to make some progress in 

finding the statistical properties of x, assume that w is a Wiener 

process. 

A Wiener process is a Markov process which satisfies the following 

conditions: 

1.  It is a second order process; that is, for all t 

? 
E[w (t)] < oo 

Hence, the mean m(t) exists as well as the covariance function 

r(s, t) = cov [w(t), w(s)] 
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2. The process has independent increments; that is, for arbitrary 

times t, < t« < ... < t , the increments 
1   z n 

x(t ) - x(t  .), x(t  ) - x(t   ),...,x(t9) - x(t.), x(t ) 
n      n-i     n-i      n-z        z      i     1 

are independent.* 

3. The distribution of x(t) - x(s) for arbitrary t and s depends 

only on t-s.  In this case, the process is said to have stationary 

increments. 

4. The transition probabilities are Gaussian.  In the one- 

dimensional case, the transition probability density is 

p(t + At, w|t, 0) = j±^  exp - w2/2At 

5.  w(0) = 0 with probability one, and E[w(t)] = 0 for all  t > 0. 

Sample functions of a Wiener process have interesting properties. 

They can be continuous functions but are nowhere differentiable.  Their 

paths are of infinite length.  Yet it is for just such perturbations 

that (A.2) will be solved. 

If w in (4.2) had bounded variation, the solution could be written 

in terms of the transport matrix <J>(x, t) of the linear system 

y=Ay (4.3) 

The solution of (4.2) would be 

x(t) = $(t, 0) c +     <t>(t, T) d w(T)      (4.4) 

where the value of x at t = 0 is the random variable c.  The expectation 

of c is m and its covariance matrix is f. 

9 
independent random variables are defined on page 7 of Doob. 
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The integral 

$(t, x) d W(T) }' 

is a stochastic integral.  Since the transport matrix $(t, T) is 

deterministic and has continuous derivatives, one way of defining 

this integral is through integration by parts. 

J  $(t, T) d w( r(T) - 4>(t, t) w(t) - *(t, 0) w(0) 
0 

-   J  |f (t, T) W(t) dT 

It follows from (1.15) and other properties of the transport matrix 

that 

t t 

J  $(t, T) d W(T) = w(t) - $(t, 0) w(0) +  I  $(t, T) A(T) W(T) dT 
0 0 

(4.5) 

The integral on the right exist for almost all sample functions since 

the sample functions of w(t) are almost all continuous.  This way of 

defining the integral has the desirable feature that the integral can 

be interpreted as an integral of sample functions.  It does not, how- 

ever, preserve the intuitive idea that the integral is a limit of sums 

of independent random variables nor can it be extended to the case 

where $ is stochastic.  Doob gives a more formal definition of the 

integral together with detailed proofs of its stochastic properties. 

The expected value of this integral is computed as follows: 
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J  *(t, T) d w(T)  = E[w(t)] - 4><t, 0) E[w(0)] 

+ E  [J  4>(t, T) A(T) w(T) CITJ 

c 
+  J  $(t, T) A(T) ra(T) dT = m(t) - <&(t, 0) m(0) 

Hence 

J  4>(t, T) d W(T)J =  J  *{t, T) d m(T)    (4. 6) 

The properties of the solution of the stochastic differential 

equation (4.4) will now be investigated.  Since x is a linear function 

of a normal process, it is also normal and can be characterized com- 

pletely by the mean value function and the covariance function.  Since 

the expected value of the Wiener process w(t) is zero, 

E[x(t)] = *<t, 0) E[c] + E 

= $(t, 0) mQ 

J  *<t, T) d W(T) 

where mn is the expected value of the initial condition c.  Hence 

mx(t) = E[x(t)] = 4>(t, 0) mQ (4.7) 

Taking derivatives yields 

dm 

jjT - !t *(t' 0) m0 = A(t) *(t« 0) m0 = A(t) mx   (4*8) 
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Thus the mean value satisfies the linear differential Equation (4.3). 

The covariance matrix is more difficult to compute.  In order to 

simplify the calculations, assume mn = 0; hence, E[x(t)] = 0.  This can 

always be achieved by subtracting ra  from x.  For s >_ t, 
X 

R(s, t) = cov [x(s), x(t)] = E[x(s) xT(t)] 

= E U(s, t) x(t) +     <f>(s, a) d w(a) | xTU) 

= $(s, t) E[x(t) xT(t)] +     $(s, a) E[d w(a) xT(t)] 
t 

= <f>(s, t) R(t, t) (A.9) 

The integral is zero since w(a) and x(0 are independent for s _> t. 
T 

Set P(t) = R(t, t) = E[x(t) x (t)].  Then P(t) is the variance and is 

therefore the function of interest. 

P(t) = E  U(t, 0) c + J  4>(t, X) d w(T)j 

+ ( $(t, 0) c +  J  4>(t, o) d w(a) j 

= $(t, 0) E[c cT] $T(t, 0) 

+ $(t, 0) E 

+  J  $(t, 

J  d w T     T L(o)  ^(t, a) 

T) E[d w(x) C * (t, 0) 

.t   „T 

+        4>(t, T) E[d W(T) d wT(a)] <J)T(t, a) 
0   0 
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The increments of the Wiener process are independent of C; hence 

E [c dT w(o)] = E [d W(T) cT] = 0 

Moreover, from the properties of the Wiener process 

E [d w(T) d wT(a)] = 0 

if dx and dö have no parts in common; otherwise 

E [d w(T) d WT(T)] = R dx 
w 

where R  is the covariance matrix of the Wiener process w.  The final 

expression for P is then 

P(t) = 4>(t, 0) r <DT(t, 0) +     <D(t, T) R (T) $T(t, T) dT 

(4.10) 

A differential equation for P can be obtained from this expression 

for P simply by differentiating 

dt ' [d? *(t' 0)] r $T(t' 0) + *(tf 0) r oT *T(t» 0) 

+ *(tf t) Rw(t) *
T(t, t) +   J    3 *<*' T) Rw(T) $

T(t, T) dT 

+  J  *(r, i) Rw(T) ^ 0T(t, T) dT 
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The transport matrix satisfies 

Hence 

|* (t, T) = A *(t, T) 

3 ^   T) " *T(t. T) AT 

4f = A *(t, o) r $T(t, o) + <D(t, o) r $T(t, o) AT at 

■f Rw(t) +  J  A <D(t, T) RW(T) 4>T(t, T) dT 

+   J   *(t, T) Rw(T) $T(t, T) AT d: 

£ = A | $(t, o) r$Ti + J  4>(t, I) Rw(T) $
T(t, T) dT 

1 d>T(t, 0) +  J   $(t, T) Rw$
T(t, T) dT 1 AT 

+ R (t) w 

Thus from (4.10) 

dP T 
77 = A P + P A1 + R ,/ ,,% 
dt w (4.11) 

P(0) = T (4.12) 
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THE KALMAN-BUCY FILTER 

The solution of the optimal control problem for a linear stochastic 

system is given by the separation theorem.  It consists of an optimal 

filter for estimating the state of the system from the observed data and 

a linear feedback of the estimated state of the system; see Figure 7. 

The linear feedback is the same as the feedback that would be obtained 

if there were no stochastic perturbation of the system.  This section 

will develop the explicit computational schemes for solving the filter- 

ing problem. 

Suppose we have the stochastic process described in the previous 

section 

dx = A x dt + d w(t) (5.1) 

x(0) = c (5.2) 

where w(t) is a Wiener process and c is a Gaussion zero mean n-vector. 

In an actual case in which the process is realized, it is important to 

know the state of the system.  It is, however, not always possible to 

measure x directly; instead, a set of quantities z(t) dependent on x are 

measured.  Assume that the dependence of z on x is linear and is given 

by 

dz = H x dt + dv (5.3) 

where the perturbation v is a Wiener process independent of x. 

The filter problem can be formulated as follows.  Assume that a 

realization of the output z has been observed over the interval 

0 < T < t.  Determine the best estimate of the value of the state vector 

x at time t.  It is assumed here that the admissible estimates of x are 

linear functionals F(z) of the observed output z.  The criterion 
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for determining the best estimate is that the mean square estimation 

error be a minimum.  This best estimate x(t) is dependent on the values 

of z(x) in the interval 0 < T < t, and it can be proved that it is a 

linear combination of the values of z on this interval. 

[t) =   J   K(t, T) d Z(T x(t) =   I  K(t, T) d z(T) (5.4) 

Since Z(T) is a stochastic variable, x(t) is a stochastic integral. 

Interpolation and extrapolation are two problems that are related 

to the filtering problem.  The interpolation problem is one of estimating 

the state at some time T < t; the extrapolation problem is one of esti- 

mating it at some time i > t.  This latter problem is the one which is 

of interest to the stock market investor. 

The condition that x(t) is the best estimate from among all linear 

functionals of z(t) for the state vector x in the least squares sense is 

stated mathematically as follows.  For every constant vector X and 

linear functional F, 

E[UT(x(t) - x(t))}2] < E[{XT(x(t) - F(z))}2]    (5.5) 

where all variables have a zero mean. 

E[x(t)] = E[x(t)] = E[F(z)] = 0 

Now set 

x = x - x 

where x is called the minimum error vector. 

E[(XT x)2] < E[XT(x + (F(z) - x))2] 

< E[(XT x)2] + 2E[XT x XT (F(z) - x)] 

+ E[(XT (F(z) - x))2] 
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For all A and F(z), the criterion (5.5) requires 

E[(XT (F(z) - x))2] + 2E[AT x AT (F(z) - x)] > 0 

This can be true only if 

0 E E[AT x AT (F(z) - x)] = AT E[x(F(z) - x)T]A 

But this implies that 

E[x (F(z) - x)1] = 0 

for any linear combination F(z) of elements of z; hence 

E[x FT(z)] = 0 (5.6) 

An integral equation for the kernel K(t, T) can be derived from 

(5.6).  This kernel is not a stochastic quantity, and it can be de- 

termined independent of the realization z(-).  For F(z) = z(l) - 

z(a), 0 < a < T < t, the expression (5.6) yields 

E[x(t) (z(T) ■■ z(a))T] = E[x(t) (z(T) - z(a)) 

)   T 
= E 

= E 

= E 

x(t) I    H(s) x(s) ds + d v(s) 

I J  K(t, r) dz(r)   I J  H(s) x(s) ds + dv(s) r] 
K(t, r) (H(r) x(r) dr + dv(r)) (H(s) x(s) ds + dv(s))T 

_ 0  a J 

. t  „r 

J  K(t, r) H(r) x(r) xT(s) HT(s) ds dr 
0  a 

55 



• t   „T 

+  J      K(t, r) H(r) x(r) dvT(s) dr 
0   a 

+ K(t, r) dv(r) xT(s) HT(s) ds 
0   o 

J      K(t, r) dv(r) dvT(s) 
0   a 

From the properties of Wiener processes, 

»t  «T 

K(t, r) dv(r) dvT(s) =     K(t, s) R (s) ds 
0  ö 

where R  is the covariance matrix of the process.  Furthermore, 
v 

T 
dv(s) and x(s) are independent, so E dv(r) x (s) = 0; hence 

E[x(t) (z(T) - z(ö))T] = K(t, r) H(r) E[x(r) xT(s)] 
a  I J0 

(5.7) 

H (s) dr + K(t, s) Rv(s) \   ds 

for all a and T.  On the other hand, from (5.3) 

E[x(t) (z(x) - z(a))1] = E x(t) |  J  H(s) x(s) ds + dv(s) | 

E[x(t) xT(s)] HT(s) ds 

{    K(t, r) H(r) E[x(r) xT(s)] HT(s) dr 
a  ( 0 

+ K(t, s) Rv(s) I  ds 
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where the last equality results from (5.7).  Since this equation holds 

for all o and T in the interval [0, t], 

K(t, s) R (s) = E[x(t) xT(s)] HT(s) -     K(t, r) H(r) E[x(r) xT(s)] HT(s) dr 
V 0 

(5.8) 

This is a nonhomogeneous integral equation for K(t, s).  Its kernel 
T     T 

is H(r) E[x(r) x (s)] H (s).  Since it corresponds to a positive definite 

quadratic form, all its eigenvalues are positive and the equation has a 

solution.  Unfortunately, it is not possible to calculate K(t, s) from 
T 

this equation because E[x(r) x (s)], the covariance of x(s), is unknown. 

A different equation for K(t, s) can be obtained from (5.8) by 

differentiating both sides of it with respect to t. 

3 K(g; S) Rv(s) = |j E[x(t) x
T(s)] HT(s) 

- K(t, t) H(t) E[x(t) xT(s)] HT(s) 

-  J   3 K(!j' r) H(r) E[x(r) xT(s)] HT(s) dr 

By (5.1) 

Hence 

dx = Ax dt + dw 

E[dx(t) xT(s)] HT(s) = A(t) E[x(t) xT(s)] HT(s) dt 

+ E[dw(t) xT(s)] 
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T 
The second term vanishes since dw(t) and x (s) are independent if 

t _> s.  This yields 

8 K(^ S) R (s) = [A(t) - K(t, t) H(t)] E[x(t) xT(s)] HT(s) 
Ot      V 

|£ (t, r) H(r) E[x(r) xT(s)] HT(s) dr 
0  3t 

Use of the integral equation (5.8) to obtain an expression for 

E[x(t) xT(s)] HT(s) yields 

I8 Ul[  S) + K(t, t) H(t) K(t, s) - A(t) K(t, s) Rv(s) 

m  _     J  U K(t, r) + K(tj t) H(t) K(t> r) _ A(t) K(tj r)J 

H(r) E[x(r) xT(s)] HT(s) dr (5.9) 

Set 

iKt, s) = 9 K(^: S) + K(t, t) H(t) K(t, s) - A(t) K(t, s) 
— ot 

Then by (5.9) 

$<t. s) = -  J  Ut,   r) H(r) E[x(r) xT(s)] HT(s) Rv
1(s) dr 

(5.10) 

Since the kernel of this integral equation corresponds to a positive 

definite quadratic form, the only solution of (5.10) is 

i(t, s) E 0 
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This yields the following differential equation for K(t, s): 

9 K(^ S) - A(t) K(t, s) - K(t, t) H(t) K(t, s)   (5.11) 

From the integral equation (5.8) for K(t, s) 

K(t, t) Rv(t) = E[x(t) xT(t)] HT(t) 

-  J  K(t, r) H(r) E[x(r) xT(t)] HT(t) dr 

On  the  other  hand, 

E[x(t)   x\t)]   =  E J      K(t,   r)   dz(r)   xT(t) 

Ü> J 

J      K(t,   r)   H(r)   E[x(r)   xT(t)]   dr 

+ K(t,   r)   E[dv(r)   xT(t)] 

where the second integral vanishes; hence 

K(t, t) Ry(t) = E[x(t) xT(t)] HT(t) - E[x(t) xT(t)] HT(t) 

E[(x(t) - x(t)) xT(t)] HT(t) 

(E[x(t) ST(t)] + E[x(t) xT(t)]} HT(t) 
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The condition that x is the best estimate from among all linear func- 
T 

tionals of z(t) leads to the result that E[x(t) x (t)] = 0.  Hence 

P(t) HT(t) = E[x(t) xT(t)] HT(t) = K(t, t) Rv(t)  (5.12) 

From the stochastic integral, 

(t) =  J  K(t, r) dz(r) x 
0 

:(t) = K(t, t) dz(t) +  J   8 K(^; r) dz(r) dt 

.t 

or 

= P HT R"1 dz(t) +     (A(t) K(t, r) - K(t, t) H(t) K(t, r)) dz(r) dt 
0 

dx(t) = A(t) x(t) dt + P HT R 1(dz(t) - H(t) x(t) dt) (5.13) 

Since z(t) and presumably dz(t) are known, this is a stochastic differ- 

ential equation for x(t). 

Note that 

dz(t) - H(t) x(t) dt = dz(t) - H(t) x(t) dt + H(t) x(t) dt 

= dv(t) + H(t) x(t) dt 

From this expression and (5.13), we get the following stochastic 

differential equation for x 

60 



dx = dx(t) - dx(t) 

= A x dt + dw - A x dt - P H^1 (dv + H(t) x) 

= A x dt + dw - P HT R_1 dv - P HV"1 H x dt 
v v 

= [A - P HT R"1 H] x dt + dw - P HT R_1 dv 
v v 

with x(0) = x(0).  By the methods developed in the previous section 

for stochastic differential equations, 

P(t) = E[i(t) xT(t)] 

- *(t, o) r $T(t, o) + J  cD(t, a) [Q(o) 

+ P(o) HT(a) R~L(o) H(a) PT] $T(t, a) da   (5.14) 

where $(t, T) is the transport matrix associated with the linear 

differential equation 

^ = (A - P HT R"1 H) y (5.15) 

and where 

from (4.11) 

Q dT = E[dw(x) dwT(i)] (5.16) 

dP T  -1 T  -1   T 
—- « (A - P H  R  H) P + P(A - P H  R  H) at v v 

+ Q(t) + P HT R""1 H PT 
v 
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or 

^= A 
dt  A 

P + P AT- 
T -1 

P H  R 
v 

H P - Q (5.17) 

p(0) = r (5.18) 

This set of equations finishes the solution of the filter problem. 

The optimal filter is a feedback system which is described by the 

stochastic differential equation (5.13).  It is obtained by taking the 

measurements z(t), forming the error signal z(t) - H(t) x(t), and feed- 
T    -1 

ing the error forward with a gain P(t) H (t) R  (t).  P(t), the error 

variance, is obtained as a solution to the nonlinear Riccati-type 

equation (5.17), H(t) is a known transformation matrix, and R is 

the variance of the Wiener process dv.  A block diagram of the filter is 

shown in Figure 8.  The variables appearing in this diagram are vectors, 

and the boxes represent matrices operating on vectors.  The double lines 

which indicate direction of signal flow serve as a reminder that multiple 

signals rather than a single one are being directed. 

Figure 8 — Optimal Filter 
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